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Functional Group Polyhedra provide a simplified representation of the most essen-
tial spatial features of macromolecules, especially, of globular proteins. Since the func-
tional group polyhedron model focuses on large scale features, the chirality and other
symmetry deficiency measures of these molecules, when adapted to these polyhedra,
should also be based on the characterization of large scale shape features. Two new
approaches for the evaluation of such symmetry deficiency and chirality measures are
presented.
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1. Introduction

The concepts of approximate symmetry, “almost” symmetric molecular con-
formations, “almost” achiral nuclear arrangements, the degree of chirality, and
in a more general sense, the degree of symmetry deficiency have been applied
to molecules in several different ways (for a selection of approaches, see refer-
ences [1–24]). By exploiting the non-geometrical features of topology, some of
the approaches have used the freedom afforded by topology to handle approx-
imate symmetry [25–28]. Measures describing the degree of molecular symmetry,
or in an alternative approach, the degree of symmetry deficiency, and in partic-
ular, the degree of chirality, are tools focusing on specific aspects of molecular
shape.

Molecular shape analysis focuses on the electron density distributions of
molecules. The electron density forms a fuzzy cloud surrounding the nuclei of
the molecule, and this cloud fades away gradually to zero density value as the
distance from the nearest nucleus converges to infinity. For large enough dis-
tances from the nuclei, the decrease of electron density follows an exponential
function, however, within the chemically more important regions closer to the
nuclei, the functional representation of electron density can become very com-
plex. For relatively small molecules, up to a few hundred atoms, the pattern of
the electronic density can be studied easily in terms of isodensity contour sur-
faces, however, for macromolecules, this approach becomes cumbersome, since
these patterns become too complex for simple analysis. Nevertheless, even for
macromolecules, the electron density carries all molecular information, and it is
the basis for shape analysis.

One of the essential elements of the study of molecular electron densities
is the identification of reactive regions. Often, these reactive regions are char-
acterized as functional groups, and the quantum chemical definition of func-
tional groups is based on the patterns of the electron density cloud [29–31]. The
properties of quantum chemically defined functional groups have been studied in
terms of fuzzy set models [32], also in terms of relations between local shape and
global shape [33], where the holographic properties of electron densities [34] have
been exploited. Alternative approaches [35,36] have been based on the potential
energy hypersurface model [37,38] of conformational changes and chemical reac-
tions.

For macromolecules, especially for proteins, alternative, simplified rep-
resentations have also been proposed. One such approach, emphasizing the
distribution of the biochemically essential functional groups within the protein
molecule, is the Functional Group Polyhedron model [39,40]. This model has
also led to a family of similarity measures between proteins, based on the bio-
chemically important functional groups. The quantum chemical definition of
functional groups [29–31] is based on electron density and it has a natural con-
nection to molecular shape analysis, consequently, this definition is also a natural
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basis for the functional group polyhedron model. Nevertheless, one may use
other, possibly simpler criteria for the construction of a valid a functional group
polyhedron model.

2. General symmetry deficiency measures

First we shall consider a rather general approach to symmetry deficiency
measures, that is applicable to fields beyond chemistry, and is formulated in
terms of general set theory. Only a brief review of the definions is given without
formal theorems and proofs, for more detail the reader is referred to the litera-
ture [19,20,22].

A set is an R-set if it has the symmetry element R.
B is an R-subset of a set A if B is a subset of A, and B is an R-set.
B is a maximum volume R-subset of a set A if B is an R-subset of A and if

volume V(B) is maximum among all R-subsets of A. (note that, while B is not
necessarily unique, V(B) is).

C is an R-superset of a set A if C is a superset of A (A is a subset of C),
and C is an R-set.

C is a minimum volume R-superset of a set A if C is an R-superset of A and
if volume V(C) is minimum among all R-supersets of A. (note that, while C is
not necessarily unique, V(C) is).

The internal R-symmetry deficiency measure, ISD(A,R) of a set A is

ISD(A,R) = 1 − V(B)/V(A), (1)

where B is a maximum volume R-subset of A.
The external R-symmetry deficiency measure, ESD(A,R) of a set A is

ESD(A,R) = 1 − V(A)/V(C), (2)

where C is a minimum volume R-superset of A.

3. Density domains and functional groups

The quantum chemical definition of functional groups is based on the con-
cepts of isodensity contours and density domains.

A molecular isodensity contour surface, MIDCO G(K,a) of nuclear configu-
ration K and density threshold a is defined as

G(K,a) = {r : r(K, r) = a}, (3)

that is, as the collection of all points r of the 3D space where the electronic den-
sity r(K,r) is equal to the threshold value a.
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Note that one application of the MIDCOs is the Shape Group approach
developed for the detailed shape analysis of molecular electron densities, mak-
ing up the fuzzy bodies of molecules. The shape groups are algebraic groups, not
related to point symmetry groups, although the presence of symmetry may influ-
ence the shape groups. The shape groups are the algebraic-topological homology
groups of truncated objects, where the truncation is determined by local shape
properties. In most applications of shape groups, the local shape properties are
specified in terms of shape domains: for example, in terms of the locally convex,
concave, or saddle-type regions of MIDCO’s, relative to tangent planes, or tan-
gent spheres.

A density domain DD(K,a) is a domain enclosed by a MIDCO C(K,a), that
is

DD(K,a) = { r:ρ(K,r) >a}. (4)

The density domain approach has been suggested for a quantum chemical
representation of formal functional groups. Consider a single connected density
domain DD(K,a) and the nuclei enclosed by it. The very fact that this subset of
the nuclei of the molecule is separated from the rest of the nuclei by the bound-
ary G(K,a) of the density domain DD(K,a) indicates that these nuclei, together
with the local electronic density cloud surrounding them, represent a sub-entity
of the molecule, with individual identity.

It is natural to regard this density domain DD(K,a) as a representative of
a formal functional group.

4. Functional group polyhedra

Take a set of functional groups from a molecule M, and define a unique
point for each. Take the convex hull of these points, this defines a functional
group polyhedron FGP(M) for the molecule M.

This polyhedron provides a simplified representation of some of the chem-
ically significant, essential geometrical aspects of the molecule M.

The symmetry and chirality properties of an FGP(M) polyhedron can be
studied directly, leading to a “low resolution” description, and an FGP(M) poly-
hedron can be compared directly to another FGP(M′) polyhedron. Whereas the
source of the original input information is a quantum chemistry study of the
molecule, some of the tools for the purposes of the analysis of functional group
polyhedra are provided by topology and discrete mathematics.
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5. Application of general symmetry deficiency measures for functional group
polyhedra

Take the functional group polyhedron FGP(M) of a molecule M, and con-
sider the general internal and external symmetry deficiency measures ISD(A,R)
and ESD(A,R) discussed in section 2. By taking A as the convex functional
group polyhedron FGP(M) of molecule M, these symmetry deficiency measures
can be evaluated relatively easily for any symmetry element R, since the very
fact of dealing with convex polyhedra allows one to use efficient algorithms
for applying and testing various symmetry operations. The internal and external
symmetry deficiency measures

ISD(FGP(M),R) (5)

and

ESD(FGP(M),R) (6)

provide a low resolution description of the approximate symmetry of the distri-
bution of the essential functional groups of the macromolecule M.

We shall be especially concerned with a particular type of symmetry defi-
ciency, chirality.

An internal chirality measure ICH(FGP(M)) and an external chirality mea-
sure ECH(FGP(M)) of the functional group polyhedron FGP(M) can be defined
as follows:

ICH(FGP(M)) = min{ISD(FGP(M),R), R = σ, S2n, n = 2, 3, 4, . . . } (7)

and

ECH(FGP(M)) = min{ESD(FGP(M),R), R = σ, S2n, n = 2, 3, 4, . . . }, (8)

respectively, where symmetry element σ is a reflection plane, whereas symmetry
elements S2n, n = 2, 3, 4, . . . correspond to rotation-reflection symmetry opera-
tors of even fold. If present, any one of these symmetry elements implies achi-
rality for the functional group polyhedron FGP(M).

Note that even if only one of the symmetry elements listed in these defi-
nitions shows only a small degree of symmetry deficiency, then the structure of
the functional group polyhedron is “almost” achiral, and this justifies taking the
minimum of symmetry deficiency measures in definitions (7) and (8).

Also note that for most macromolecules it is sufficient to consider n values
smaller than 10, since higher n values for symmetry elements of improper rota-
tions would assume higher levels of angular regularities in macromolecules than
it is commonly possible.
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6. A symmetry-biased dissimilarity measure for functional group polyhedra

Consider two macromolecules M and M′, and assume that they are suffi-
ciently similar in a chemical sense, so that they have either the same lists of
essential functional groups, or the two lists can be matched up in a reasonable
way. Whereas the above considerations are not strictly necessary for the forth-
coming discussion, and the symmetry-biased dissimilarity measures can be intro-
duced for two fundamentally different molecules and functional group polyhedra
FGP(M) and FGP(M′), the dissimilarity measures to be introduced are likely to
be more useful if there is at least some chemical commonality between the two
molecules. A typical example where this commonality is present, if one considers
two different conformations of the same macromolecule.

Consider a set R of k symmetry elements,

R = {Ri, i = 1, 2, . . . , k} (9)

and the associated internal symmetry deficiency measures

ESD(FGP(M), Ri), i = 1, 2, . . ., k (10)

and

ESD(FGP(M′), Ri), i = 1, 2, . . . , k, (11)

respectively, where we focus on the external symmetry deficiency measures.
With respect to the given set of symmetry elements R, a symmetry-biased

external dissimilarity measure SBSext(M,M′,FGP, R) of the two functional group
polyhedra FGP(M) and FGP(M′) can be defined as

SBSext(M,M′,FGP, R) = [�i=1,k[ESD(FGP(M), Ri) − ESD(FGP(M′), Ri)]2]1/2.

(12)

For any two macromolecules M and M′, the quantity SBSext(M,M′,FGP, R)
expresses how different the approximate symmetries of the two functional group
polyhedra are, wu=ith respect to the given set of symmetry elements.

Note that a symmetry-biased internal dissimilarity measure SBSint(M,M′,
FGP, R) can be defined entirely analogously, simply by replacing the external
symmetry deficiency measures ESD(FGP(M), Ri) with the internal symmetry
deficiency measures ISD(FGP(M), Ri) in the above definition (12).

In the comparisons of proteins of similar biochemical functions, or in the
comparisons of drug molecules of comparable effects, or simply, in the com-
parisons of different conformations of the same protein or those of the same
drug molecule, an important aspect of their dissimilarity is the different degree
of their approximate symmetry. This dissimilarity measure provides a tool for a
numerical characterization of their differences.
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7. Comments on the choice of vertices of functional group polyhedra
and preferences for internal or external symmetry deficiency measures

There is a considerable freedom in the potential choices for defining verti-
ces of the functional group polyhedra FGP(M). A simplistic choice is the nuclear
position of the most relevant atom of the given functional group, that might be,
for example, the proton of a carboxyl group. Alternatively, one may consider a
MIDCO of a particular density threshold a of the local electron density cloud of
the functional group, and chose the point of this MIDCO furthest away from the
center of mass of the macromolecule. This might be a reasonable choice if the
peripheral regions of the macromolecule are considered important. Yet another
alternative is the choice of a point of the MIDCO that is falling on the line
drawn through the two nuclei involved in the bond most likely to break when
the functional group undergoes its typical chemical reaction. Since there are at
least two such points, in most cases one should chose the one nearest to the cen-
ter of the broken bond. This latter choice is one that is likely to be most relevant
to the actual chemical role of the given functional group, but further, alternative
choices are also possible.

In many instances the external symmetry deficiency measures ESD(FGP(M),
R) and the external chirality measures ECH(FGP(M)) are the chemically more
relevant. This is the case for most smaller molecules where the expected chemical
or biochemical activity is initiated on the peripheral regions of the molecule.

On the other hand, for proteins which function as enzymes where the cav-
ity region has special significance, if the chosen functional groups are restricted
to those present in the cavity region, then the interior of the functional group
polyhedron FGP(M) is relevant. Consequently, in such cases the internal sym-
metry deficiency measures ISD(FGP(M),R) and the internal chirality measures
ICH(FGP(M)) are of higher importance.
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